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Abstract— We present the Habitat-Matterport 3D Open
Vocabulary Object Goal Navigation dataset (HM3D-OVON),
a large-scale benchmark that broadens the scope and se-
mantic range of prior Object Goal Navigation (ObjectNav)
benchmarks. Leveraging the HM3DSem dataset, HM3D-OVON
incorporates over 15k annotated instances of household objects
across 379 distinct categories, derived from photo-realistic
3D scans of real-world environments. In contrast to earlier
ObjectNav datasets, which limit goal objects to a predefined
set of 6-21 categories, HM3D-OVON facilitates the training
and evaluation of models with an open-set of goals defined
through free-form language at test-time. Through this open-
vocabulary formulation, HM3D-OVON encourages progress
towards learning visuo-semantic navigation behaviors that are
capable of searching for any object specified by text in an open-
vocabulary manner. Additionally, we systematically evaluate
and compare several different types of approaches on HM3D-
OVON. We find that HM3D-OVON can be used to train an
open-vocabulary ObjectNav agent that achieves both higher
performance and is more robust to localization and actuation
noise than the state-of-the-art ObjectNav approach. We hope
that our benchmark and baseline results will drive interest in
developing embodied agents that can navigate real-world spaces
to find household objects specified through free-form language,
taking a step towards more flexible and human-like semantic
visual navigation. Code and videos available at: naoki.io/ovon.

I. INTRODUCTION

Visual navigation to a language-specified object is an
essential skill for robot assistants that can aid humans in a
variety of tasks in indoor environments, such as “find my
keys on the L-shaped couch”. The interest in developing
visual navigation systems has increased in recent years,
highlighted by the embodied AI community’s establish-
ment of standardized evaluation metrics and benchmarks
for numerous navigation tasks [1]–[3]. Various navigation
tasks have been proposed, each defining goals differently
– point-goal navigation for 2D coordinates [4], object-goal
navigation [2], [5], image-goal navigation [6]–[8], and
language-goal navigation (via referring expressions or step-
by-step instructions) [9], [10]. In this work, we focus on the
ObjectNav task where an agent is initialized in an indoor
environment and tasked with navigating to an instance of a
specified goal object category (e.g., ‘couch’). While existing
ObjectNav benchmarks have typically concentrated on a
limited, fixed set of object categories (6-21 object categories)
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Fig. 1: We study the Open-Vocabulary ObjectNav (OVON) task,
which involves an agent tasked with navigating to object goals in
an open-set, specified through language. In the above example, an
agent is tasked with navigating to an ‘L-Shaped Couch’.

and have only tested the generalization of navigation agents
to novel environments, robotic agents in the real-world must
also learn to generalize and navigate to an open set of object
goal categories. To address this, we investigate the problem
of open-vocabulary ObjectNav, where an agent will be asked
to navigate to an object specified by language (seen or unseen
during training). Fig. 1 illustrates an example of such an
episode.

We introduce a dataset and benchmark named
Habitat-Matterport 3D Open-Vocabulary ObjectNav
(HM3D-OVON), designed to test the generalization of
ObjectNav agents in an open-vocabulary setting using
the HM3DSem [2] scene dataset. To examine how well
agents can generalize to new goal object categories and
environments, we propose three evaluation splits: 1) VAL
SEEN- consists of goal categories seen during training,
2) VAL SEEN SYNONYMS- consists of goal categories
synonymous to those seen during training (i.e., “couch”
category seen during training, evaluated on “sofa” during
evaluation), 3) VAL UNSEEN- consists of goal object
categories that are not seen during training nor semantically
similar to any category from the training set. We then
use these evaluation splits to meticulously examine the
performance of a variety of agents across goal object
categories with varying degrees of semantic similarity to
the training data.

We benchmark policies using several types of popular
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learning paradigms on HM3D-OVON, including imitation
learning (IL), reinforcement learning (RL), and modular
methods [8], [11], [12], to understand their impact on the
agent’s ability to navigate to and recognize objects in an
open-vocabulary setting. Through this benchmarking, we find
that training end-to-end policies using imitation learning,
specifically DAgger [13], with frontier exploration trajec-
tories and fine-tuning with RL (referred to as DAgRL)
outperforms all other end-to-end trained methods. However,
DAgRL shows a drop in success rate of 11.9–23.0% com-
pared to VAL SEEN when evaluating on VAL SEEN SYN-
ONYMS and VAL UNSEEN, suggesting that trained methods
struggle to generalize to unseen categories using end-to-
end learning on ObjectNav alone. In contrast, the modular
method VLFM [12], which leverages explicit maps and
vision-language foundation models to explore the environ-
ment in a semantically meaningful way, achieves consistent
performance between 32.4–35.2% on success rates across the
three evaluation splits. We attribute this to the strong gener-
alization capabilities of the open-vocabulary object detector
(OWLv2 [14]) used to detect the goal object. Motivated by
this observation, we find that augmenting DAgRL with an
object detector and a navigation module for bee-lining to
the detected object (referred to as DAgRL+OD) significantly
improves the generalization of end-to-end methods on the
VAL SEEN SYNONYMS and VAL UNSEEN splits, with a
9.6–18.8% increase in success rate. We also find that DAgRL
is much more robust to noise that simulates real-world
conditions than VLFM.

Additionally, we conduct a comprehensive analysis of
different architectures used for encoding temporal informa-
tion (transformer vs. RNN), imitation learning algorithms
(behavioral cloning vs. DAgger), and types of trajectories
used for imitation learning (frontier exploration vs. shortest
path following). We find that policies perform significantly
better when trained using a transformer instead of an RNN,
with DAgger instead of behavioral cloning, and with frontier
exploration instead of shortest path trajectories. Our findings
on the impact of the types of trajectories used for imita-
tion learning directly contradict the findings presented in
SPOC [15], which asserted that shortest path trajectories lead
to better performance than those that involve exploration
for imitation learning. Furthermore, we present a detailed
analysis of the failure modes of these agents, which illumi-
nates the challenges and opportunities in developing robotic
agents capable of robustly navigating to objects specified
in free-form language in real-world environments, paving
the way for more capable and generalizable visual semantic
navigation robots. Code for HM3D-OVON can be found at
naoki.io/ovon.

II. RELATED WORKS

ObjectNav in virtual environments. In recent years,
several benchmarks have been established for training and
evaluating a robot’s ability to locate an instance of a given
object category within a novel environment (ObjectNav).
However, these benchmarks often exhibit two main short-

Scene Object Object
type instances categories

Habitat ObjectNav [16] Real-world scans 7,599 6
MP3D ObjectNav [17] Real-world scans 8,825 21
ProcTHOR [18] Synthetic 1,633 108
OVMM [19] Synthetic 7,892 150

HM3D-OVON Real-world scans 15,661 379

TABLE I: Comparison of public ObjectNav benchmarks. Our
HM3D-OVON benchmark provides a large number of unique
objects and categories. HM3D-OVON also uses 3D scans of real-
world environments instead of synthetic arrangements of 3D assets
that better represent the semantic diversity of real-world conditions.

comings. First, the benchmarks may rely on a limited, fixed
set of goal object categories for both training and evaluation.
For instance, the HM3D ObjectNav dataset [20] encompasses
only 6 different goal categories, while the MP3D Object-
Nav dataset [17] includes 21. This restriction significantly
hampers the training of approaches capable of navigating to
a broader range of objects, and fails to test an approach’s
ability to generalize to new goal object categories unseen
during training. Second, benchmarks may exclusively utilize
synthetically generated scenes, rather than scans of real-
world environments. For example, ProcTHOR [18] employs
procedural generation to create floor plans and populate
rooms with 3D assets, while OVMM [19] utilizes around
200 synthetic 3D scenes designed by humans. Although
synthetic scene creation can produce a vast number of
unique environments with less effort than scanning real-
world scenes, the quality and realism can be significantly
compromised; studies such as [21] have demonstrated that
navigation agents trained on synthetic scenes exhibit poorer
generalization to real-world-like environments (e.g., in terms
of furniture quantity, types, and arrangement) compared to
those trained on fewer, but meticulously designed synthetic
scenes by human artists. To mitigate these issues, our work
substantially expands the range of goal object categories,
introduces different evaluation splits to assess how well an
agent can generalize to new categories, and employs scans
of furnished real-world scenes instead of synthetic ones.
Table I contrasts our HM3D-OVON dataset with existing
public benchmarks.

Methods for ObjectNav. Prior works on ObjectNav falls
into two primary categories: modular approaches [11], [12],
[22], and end-to-end learning via imitation or reinforce-
ment learning [23]–[26]. Modular methods [11], [12], [22]
break down the ObjectNav task into sub-skills such as
exploration, recognition, and bee-lining (moving to the goal
object once detected), employing specific components for
each sub-skill. These approaches utilize heuristic-based ex-
ploration strategies, like frontier exploration [27], supported
by explicit spatial and semantic maps, object detection and
segmentation models for recognizing goal objects, and path
planning algorithms like fast marching methods for way-
point navigation. End-to-end trained methods leverage neural
networks to directly map sensor observations to actions.

http://naoki.io/ovon


Reinforcement learning (RL) variants of these methods learn
exploration skills through hand-designed dense rewards [23],
[24], while imitation learning (IL) methods draw on ex-
tensive human demonstrations [26], [28] to implicitly learn
semantic exploration, or employ shortest path planners [15]
within procedurally generated environments [18]. Prior stud-
ies employing end-to-end learning often use recurrent neural
networks (RNNs) to encode temporal information as the
agent navigates its environment [23]–[26], [28]. In contrast,
our approach examines the use of transformers to encode
observation history for end-to-end methods. Moreover, we
conduct a thorough investigation into the impact of different
imitation learning algorithms, types of trajectories used for
imitation learning, and architectural choice to encode tem-
poral information, offering an extensive comparison of these
methods and guidelines for developing scalable and effective
open-vocabulary ObjectNav agents.

III. THE HM3D-OVON BENCHMARK

A. ObjectNav task definition

The ObjectNav task challenges an agent to locate any
instance of a specified goal object category (e.g., ‘bed’)
within an unfamiliar environment [1]. At each time step,
the agent receives a set of sensory inputs: an RGB image
It, a depth image Dt, its relative displacement and heading
from the start position (odometry) Pt = (∆x,∆y,∆θ), and
the target object category G. The agent can select one of
several actions: MOVE FORWARD (by 0.25m), TURN LEFT
and TURN RIGHT (by 30◦), LOOK UP and LOOK DOWN (by
30◦), and STOP actions. Success is defined as the agent
invoking STOP within 1m of a goal object within 500 time
steps. In our experiments, we configure the simulated agent
to match the specifications of the Stretch robot [29], which
has a height of 1.41m, a base radius of 17cm, and a 360×640
resolution RGB-D camera positioned at a height of 1.31m.

B. The HM3D-OVON dataset

We utilize the HM3DSem dataset’s dense object annota-
tions [30] to compile a vast collection of ObjectNav episodes,
termed the HM3D-OVON dataset. HM3D-OVON includes
379 goal object categories across 181 unique, photorealistic
virtual scans of real-world environments. We ensure goal
objects are of significant size and visibility, occupying at
least 5% of the Stretch’s camera view from at least one van-
tage point within 1m of the object to affirm feasibility. The
dataset is segmented into training and evaluation splits, with
145 scenes and 36 scenes, respectively, ensuring no scene or
goal object instance overlap between splits. The training split
features goal object instances across 280 categories, whereas
the evaluation split comprises 178 categories.

To evaluate generalization to novel objects on varying
levels, we divide the evaluation split into three smaller splits,
each sharing the same scenes but utilizing mutually exclusive
sets of goal object categories:

• VAL SEEN: uses goal object categories seen during
training.

Novel Novel goal Train Goal
scenes? object similarity object

categories? score range categories

VAL SEEN Yes No 1.00 79
VAL SEEN SYNONYMS Yes Yes [0.68, 0.96] 50
VAL UNSEEN Yes Yes [0.45, 0.68] 49

TABLE II: All evaluation splits in HM3D-OVON use scenes and
object instances unseen during training. VAL SEEN uses seen cate-
gories, VAL SEEN SYNONYMS uses unseen categories similar to a
seen category, and VAL UNSEEN uses unseen categories not similar
to any seen category. Similarity is determined with SentenceBERT.

• VAL SEEN SYNONYMS: uses goal object categories
semantically similar to those seen during training (i.e.,
“couch” category seen during training, evaluated on
“sofa” during evaluation).

• VAL UNSEEN: uses goal object categories semantically
divergent from those encountered during training.

For VAL SEEN SYNONYMS and VAL UNSEEN generation,
we first uniformly sample ~25% of the object categories
from HM3D-OVON. Then, we separate these categories
using a semantic similarity metric calculated via Sentence-
BERT [31]. SentenceBERT, a fine-tuned variant of the pre-
trained BERT network, is designed to gauge the semantic
similarity between texts by comparing their embeddings’
cosine similarity. We compute SentenceBERT embeddings
for each sampled object category and evaluate its cosine
similarity with all training split object categories. An object
category is allocated to VAL SEEN SYNONYMS if it has a
maximum similarity surpassing a threshold; otherwise, it is
allocated to VAL UNSEEN. Table II summarizes the number
of categories and the similarity ranges for each split.

C. Episode generation

An episode in HM3D-OVON comprises of a scene, the
agent’s starting position, and a goal object category. For
episode creation, we first randomly select a goal object
category and then randomly determine a starting position
adhering to the following criteria: 1) at least one instance
of the goal is on the same floor as the starting position, as
stair climbing is not anticipated in indoor settings; and 2) the
length of the shortest path to the nearest goal location must
lie between 1m−30m. This approach aligns with the episode
generation methodology of the ObjectNav task [20]. Fig. 1
illustrates a goal example for a single episode. Following
this protocol, we generate 50k episodes per scene for the
145 training scenes, and 3k episodes per scene for the 36
validation scenes.

IV. HM3D-OVON BASELINES

In this section, we compare various learning methodolo-
gies (imitation learning, reinforcement learning, and modular
approaches) and architectural designs (transformer vs. RNN)
as proposed in prior studies on object navigation. We evaluate
each method on the HM3D-OVON benchmark.

Policy architecture. We employ frozen SigLIP [32] RGB
and text encoders to encode the visual observations and the



Transformer

SigLIPRGB

SigLIPtext

Φa

It

G

at-1

C
oncatenate

Action Head

at-98

Action Head

at-99

Action Head

at

. . .

. . .

ot-99 otot-98

Positional
Encoding

Fig. 2: Our OVON policy encodes the current visual observation
It, the goal object category G, and the previous action at−1 to form
observation embedding ot. At each step, the embedding sequence
for the past 100 time steps is fed into a transformer, which uses an
action head to sample an action at.

goal object category. These encoders have been identified
as highly effective for ObjectNav by [15]. The encoders
generate two 768-dimensional embeddings for the visual
observation, it = SigLIPRGB(It), and the goal object
category, g = SigLIPtext(G). Additionally, the agent’s
previous action, at−1, is encoded into a 32-dimensional
vector using an embedding layer, pt = ϕa(at−1). These
embeddings are concatenated to form the observation embed-
ding, ot = [it, gt, pt], which is fed into a 4-layer, decoder-
only transformer [33] πθ (8 heads, hidden size of 512),
with a maximum context length of 100. πθ takes in the
past 100 consecutive observations [ot−99, ..., ot] and outputs
a feature vector for the current time step. This vector is
passed through a linear layer (action head) that predicts a
categorical distribution from which an action at is sampled,
at ∼ πθ(·|ot−99, ..., ot). During RL, an additional linear
layer (critic head) is used to project the feature vector into
a value estimate for the current state.

When comparing against RNN-based policies, the only
architectural change we make is replacing the transformer
with a 4-layer LSTM [34] with a similar parameter count,
for fair comparison.

Behavioral cloning (BC). Learning from demonstrations
has been shown to be a powerful approach for developing
efficient semantic navigation behaviors [15], [26], [28], [35].
Behavioral cloning employs supervised learning on a dataset
of observation-action pairs from expert demonstrations to
train policies. Consider a policy πθ parameterized by θ that
maps observations ot to an action distribution, πθ(·|ot). Let
τ denote a demonstration consisting of observation-action
pairs, τ = [(o0, a0), (o1, a1), ..., (on, an)], and T = {τi}ni
denote a dataset of demonstrations. The objective function

optimization can be described as:

θ∗ = arg maxθ

N∑
i=1

∑
(ot,at)∈τi

log
(
πθ(at | ot)

)
While prior work showed that behavioral cloning using

demonstrations collected from humans performing the Ob-
jectNav task can train effective policies [26], [28], these
demonstrations were limited in diversity and are expensive
to collect, especially for the amount of categories in HM3D-
OVON. SPOC [15] used a path planner to generate the
shortest possible obstacle-free trajectory from the start pose
to the goal object, and demonstrated that these trajectories
lead to better results than those generated by an expert that
exhibits more exploration. However, this directly contradicts
the results of [28], which show learning from demonstrations
that involve frontier exploration yield better performing
policies than shortest path trajectories. These trajectories
are generated by executing frontier-based exploration, which
involves the agent systematically moving towards unexplored
areas (‘frontiers’) of the environment, until a goal object is
within range (3.5m in our experiments), at which point a
shortest path planner is used to plan a path to the goal object
(‘bee-line’). In this work, we experiment with learning from
either frontier exploration or shortest path trajectories. For
behavioral cloning, we generate a trajectory for each episode,
for each of the two types (7.25 million trajectories for each
type).

DAgger. DAgger [13] is a supervised learning algorithm
that adopts the same loss function as behavioral cloning.
However, unlike behavioral cloning, DAgger involves an
expert who provides new action labels for the agent’s trajec-
tories ‘online’ during training. Additionally, the action gener-
ated by the policy πθ is utilized to advance the environment,
rather than the expert’s actions. The formulation of DAgger’s
learning algorithm is similar to behavioral cloning, except
each labeled trajectory τ̂ now consists of observation-action
pairs τ̂ = [(oπ0 , â0), (o

π
1 , â1), ...., (o

π
n, ân)], where action

labels ât are provided by the expert, given oπt .
Unlike behavioral cloning, which relies on a pre-recorded

dataset, DAgger generates oπt (and consequently, ât) using
aπt−1 while πθ is updated, necessitating the capability to inter-
act with the environment and consult the expert online during
learning. Thus, it is crucial to use an expert that can swiftly
provide a label ât for oπt , as a slow expert can substantially
reduce the speed of training. Existing implementations of
frontier-based trajectory generation for ObjectNav [11], [28]
are overly slow for in-the-loop execution, taking 250ms per
time step, leading to a separation of trajectory generation
and supervised learning into discrete stages to maintain
training speed. This constraint has forced prior studies like
[28] to adopt behavioral cloning for learning from offline-
collected frontier exploration trajectories. To counteract this,
we introduce, alongside our benchmark, an implementa-
tion for frontier-based exploration and bee-lining engineered
specifically for rapid execution at each time step, ensuring
minimal impact on training speed. Our method only requires
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Fig. 3: Examples of successes of our DAgRL policy for each evaluation split. DAgRL can efficiently explore the environment, avoid
obstacles, and stop in front of the goal object when it is spotted, using only RGB observations. Videos can be found at naoki.io/ovon.

an average of 1ms per time step to suggest the appropriate
action for guiding the agent from its present position toward
the next frontier (or the goal object, if close enough). This not
only facilitates real-time generation of ground-truth expert
demonstrations, but also frees the agent from adhering to
predetermined trajectories, eliminating the need for a distinct
trajectory generation phase prior to training.

Reinforcement learning (RL). To train a policy using RL,
we use PPO [36] with a shaped navigation reward commonly
used for the PointGoal Navigation task [37]. This reward
consists of ∆dtg which is the change in the agent’s geodesic
distance to the nearest goal between time step t and t − 1,
and rsuccess (set to 2.5), the reward received upon success:

rt =

{
rsuccess if success,
−∆dtg − 0.01 otherwise

BCRL. We pretrain OVON policies using behavior
cloning and fine-tune using reinforcement learning with
sparse rewards, following prior work [28].

DAgRL. Similar to BCRL, we pretrain OVON policies
using DAgger and fine-tune using reinforcement learning
with sparse rewards.

VLFM. Vision-Language Frontier Maps (VLFM) [12] is
a modular method that achieves state-of-the-art performance
on various ObjectNav benchmarks, and can also support
open-vocabulary goal object categories. VLFM leverages the
depth and odometry sensors to build an occupancy map as the
robot explores the environment. In parallel, VLFM utilizes
a vision-language foundation model to assess the semantic
significance of each explored area in relation to the target
object category. While prioritizing semantically significant
areas, VLFM exhaustively explores the environment until
an object detector has detected a goal object. Once a goal
object has been detected, the depth camera is used to estimate
its coordinates. The agent then utilizes a policy trained
specifically for reaching a given goal coordinate using Dt

and Pt to reach the object and call STOP. We modify the
original VLFM implementation by integrating OWLv2 [14]
as the open-vocabulary object detector, as we found it to
outperform GroundingDINO [38] in our experiments.

DAgRL+OD. This approach extends the DAgRL baseline
by incorporating the OWLv2 object detector. It relies on

a trained DAgRL policy to explore the environment until
the detector detects a goal object. Upon detection, the agent
transitions from the DAgRL policy to a trained point-goal
policy (same as the one used in VLFM) for bee-lining to the
detected object.

Training details. The BC and DAgger policies were
trained for 150M steps, as incremental improvements di-
minished beyond this point. BCRL and DAgRL received
additional fine-tuning for 150M steps using PPO. To make
comparison with these two fine-tuned policies fair, the RL
policy is trained for 300M steps. All policies were trained
across 16 environments per GPU, distributed over 8 TITAN
Xp GPUs utilizing Variable Experience Rollout [39].

V. RESULTS

In this section, we aim to address the following questions:
1) What differences in performance can be observed be-

tween policies trained using different learning methods
(RL, IL, or modular learning)?

2) To what extent do various trajectory generation strate-
gies influence the success of imitation learning policies?

3) How do different state encoder architectures (transform-
ers vs. RNNs) impact performance?

4) How robust are our baselines to noise that simulate real-
world conditions?

A. Benchmarking learning methods

We compare different learning-based approaches: end-
to-end policies trained using RL, BC, DAg, BCRL, and
DAgRL, as well as a modular approach, VLFM [12], in
Table III. We report two metrics – success rate (SR) and
Success weighted by Path Length (SPL) [40], to compare the
performance of baselines, across three seeds. We observe that
the policy pretrained using DAgger with frontier exploration
trajectories and fine-tuned using RL with sparse rewards, i.e.,
DAgRL (row 5), outperforms all other end-to-end baselines
that do not use a navigation module for bee-lining (rows 1-
4). We attribute this performance to the effective exploration
behavior learned using imitation learning from frontier ex-
ploration trajectories, and RL fine-tuning that improves the
policy’s ability to select frontiers more likely to lead to the
goal object. Surprisingly, we find policies trained using RL
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VAL SEEN VAL SEEN
SYNONYMS

VAL UNSEEN

Method SR(↑) SPL(↑) SR(↑) SPL(↑) SR(↑) SPL(↑)

1) BC 11.1±0.1 4.5±0.1 9.9±0.4 3.8±0.1 5.4±0.1 1.9±0.2

2) DAgger 18.1±0.4 9.4±0.3 15.0±0.4 7.4±0.3 10.2±0.5 4.7±0.3

3) RL 39.2±0.4 18.7±0.2 27.8±0.1 11.7±0.2 18.6±0.3 7.5±0.2

4) BCRL 20.2±0.6 8.2±0.4 15.2±0.1 5.3±0.1 8.0±0.2 2.8±0.1

5) DAgRL 41.3±0.3 21.2±0.3 29.4±0.3 14.4±0.1 18.3±0.3 7.9±0.1

6) *VLFM [12] 35.2 18.6 32.4 17.3 35.2 19.6
7) DAgRL+OD 38.5±0.4 21.1±0.4 39.0±0.7 21.4±0.5 37.1±0.2 19.9±0.3

*deterministic method

TABLE III: Performance of all baselines on the three evaluation
splits of HM3D-OVON. DAgRL+OD outperforms the state-of-the-
art ObjectNav approach, VLFM.

with a distance to goal reward (row 3) using a transformer
state encoder performs comparably to the DAgRL baseline
(row 5), only up to 2.1% worse on SR and up to 2.7%
worse on SPL. Next, we compare the performance of end-
to-end trained methods with a modular, state-of-the-art ap-
proach, VLFM [12] (row 6). While VLFM performs worse
than DAgRL on the VAL SEEN split by 6.1% on SR and
2.6% on SPL, it outperforms DAgRL on the VAL SEEN
SYNONYMS and VAL UNSEEN splits by 3.0−16.9% on SR
and 2.9−11.7% on SPL, demonstrating strong generalization
to unseen object categories. We find this gap in performance
is due to VLFM’s use of an open-vocabulary object detector
for identifying the goal object. This detector was trained on a
substantially larger set of object classes, which may overlap
with classes present in the evaluation splits of HM3D-OVON.
To remedy this issue, DAgRL+OD (row 7) is equipped with
an open-vocabulary object detector and the same point-goal
policy as VLFM for bee-lining to detected goal objects.
We find that DAgRL+OD outperforms VLFM on all three
evaluation splits by 1.9−6.6% on SR and 0.3−4.1% on SPL.
A characterization of this issue and other failures modes are
analyzed in Sec.V-E.

B. Comparison of trajectories used for imitation learning

We compare different types of trajectories (frontier explo-
ration vs. shortest path) used during imitation learning. We
find that policies trained using frontier exploration generally
outperform those trained using shortest path following, sig-
nificantly. Our results are summarized in Table IV; in rows
1, 2, and 4, using frontier exploration rather than shortest
path following improves SR and SPL by 4.6−6.0% and
1.0−2.2%, respectively. For row 3, BCRL, we found that
the poor performance of the pretrained BC policies led to
suboptimal sparse RL fine-tuning, resulting in performance
that fails to surpass ~20% in SR for both frontier exploration
and shortest path trajectory training.

The observation that trajectories that incorporate explo-
ration are more effective for imitation learning than shortest
path trajectories directly contradicts the findings presented
by SPOC [15]. We attribute this to two possible factors:
first, the exploration trajectories in [15] are different from
our frontier exploration trajectories. While we designate an

SHORTEST PATH FRONTIER EXPLORATION

# Method SR (↑) SPL (↑) SR (↑) SPL (↑)
1) BC 5.1±0.1 3.5±0.1 11.1±0.1 4.5±0.1

2) DAgger 13.4±0.2 8.0±0.1 18.1±0.4 9.4±0.3

3) BCRL 20.6±0.3 8.5±0.2 20.2±0.6 8.2±0.4

4) DAgRL 37.7±0.6 19.0±0.4 41.3±0.3 21.2±0.3

TABLE IV: VAL SEEN performance comparing trajectories used
for imitation learning. We find policies trained using frontier-
exploration perform better than those trained using shortest paths.

area of the environment as explored once it has appeared
in the agent’s field-of-view within a certain distance (3m),
the exploration trajectories used in [15] iteratively visits the
next closest room and navigates towards every object within
it until at least 75% of the objects in the room have been seen.
This could consume more steps compared to the more direct
method of filling out the map used in frontier exploration,
resulting in less efficient learning. Additionally, its emphasis
on objects within a room might not generalize well across
different environments, especially if the environments vary
widely in layout, room size, or object density. This contrasts
with frontier exploration, which is more focused on spatial
layout and could generalize better. The second possible
factor is the difference in the navigation complexity of the
environments used. [15] used synthetic ProcThor [18] scenes,
which have been observed to contain much less obstacles and
smaller floor plans than real-world scans from HM3D [21].
The higher complexity of HM3D scenes may make policies
that learn from trajectories that exhibit exploration behaviors
perform better than policies that only learn from shortest
paths.

C. Transformer vs. RNN

We examine various techniques for incorporating temporal
information from preceding time steps to train effective
OVON policies. The findings, as presented in Table V,
demonstrate that transformer-based policies tend to surpass
RNN-based counterparts (rows 2, 3, and 5), achieving im-
provements of up to 6.3% and 4.5% in SR and SPL,
respectively. The exceptions, which do not exhibit signifi-
cant performance enhancement, are the baselines employing
behavioral cloning rather than DAgger (rows 1 and 4). This
discrepancy is likely due to the comparative lack of training
data diversity in BC when contrasted with DAgger. DAgger
and RL enable the agent to explore previously unencountered
trajectories as the policy evolves during training, whereas BC
restricts the policy to learning solely from teacher policy
trajectories, which remain static throughout the training
process. Given that transformer performance scales more
favorably with training data volume, the limited diversity in
the training data for behavioral cloning might explain why
transformer-based policies did not significantly outperform
those based on RNNs.

D. Robustness to noise

In perceiving the environment, the policies we train for
ObjectNav rely solely on an RGB sensor. This makes them



Val Seen Val UnseenVal Seen Synonyms

Fig. 4: Failure analysis of DAgRL. As the goal object categories become less similar to those seen in training (i.e., VAL SEEN, VAL
UNSEEN), the agent more frequently fails from timeouts (never calling STOP) and more frequently ignores the goal object.

RNN TRANSFORMER

# Method SR (↑) SPL (↑) SR (↑) SPL (↑)
1) BC 10.5±0.3 4.1±0.1 11.1±0.1 4.5±0.1

2) DAgger 14.7±0.0 7.4±0.2 18.1±0.4 9.4±0.3

3) RL 32.9±0.4 15.5±0.2 39.2±0.4 18.7±0.2

4) BCRL 21.0±0.4 11.1±0.2 20.2±0.6 8.2±0.4

5) DAgRL 36.5±0.8 16.7±0.3 41.3±0.3 21.2±0.3

TABLE V: Performance on VAL SEEN comparing transformer-
and RNN-based architectures for processing temporal information.
Transformer-based policy architectures generally perform the best.

Method Eval
Noise

VAL SEEN
VAL SEEN

SYNONYMS VAL UNSEEN

SR(↑) SPL(↑) SR(↑) SPL(↑) SR(↑) SPL(↑)

VLFM* - 35.2 18.6 32.4 17.3 35.2 19.6
✓ 28.8±0.2 14.0±0.1 28.5±0.2 13.9±0.1 29.1±0.3 14.2±0.1

DAgRL+OD - 38.5±0.4 21.1±0.4 39.0±0.7 21.4±0.5 37.1±0.2 19.9±0.3

✓ 38.2±1.0 18.1±0.4 38.9±0.5 18.8±0.4 36.9±0.6 17.4±0.3

*deterministic method when evaluated with no noise

TABLE VI: Despite being trained without noise, our DAgRL+OD
policy is robust against odometry and actuation noise introduced at
test-time, since it only relies on visual sensors.

inherently less sensitive to types of perturbations that may af-
fect other approaches that rely on building maps upon which
observations are spatially projected using odometry and
depth sensors. We evaluate our best baseline, DAgRL+OD,
and VLFM in the presence of noise that simulates real-world
conditions. We use an actuation noise model within Habitat
acquired from mocap-based benchmarking recorded using a
robot with a dynamics model and sensor suite similar to the
Stretch [41]. This adds Gaussian noise to the position and
rotation of the robot each time it takes an action. We also add
noise uniformly sampled sensor noise using values drawn
from the uncertainty study done by [42], adding between
±7mm and ±2◦ to the odometry sensor Pt at each time
step. Note that neither DAgRL+OD nor VLFM use models
that were trained in the presence of these types of noise.

The results of evaluation with noise are shown in Table VI.
We find that VLFM is sensitive to noise, and drops in SR
and SPL by up to 6.1% and 5.4%, respectively. This can
be attributed to the fact that VLFM iteratively builds top-
down maps that it relies on to decide where to explore next,
and the added noise can make the maps innaccurate. In

contrast, DAgRL+OD is robust to noise, and drops in SR
and SPL by only up to 0.3% and 3.0% respectively. Since
the DAgRL policy used for exploration is only able to use
RGB observations from a sequence of previous consecutive
time steps to determine where it currently is relative to where
it has been before, the policy does not learn to rely on precise
localization to attain good performance. Thus, it is robust to
the additional noise that is injected at test-time. The larger
drop in SPL compared to SR can be attributed to the fact
that the noise causes the robot to deviate from its desired
path, and the additional corrective actions required leads to
longer paths compared to evaluation without noise.

E. Failure analysis

To characterize the types of behavior that can be learned
from HM3D-OVON, we present a detailed analysis of the
different failure modes of DAgRL, the policy that attains
the best performance without relying on an external open-
vocabulary object detector. A breakdown of the different
failures modes on each of the three evaluation splits is
visualized in Fig. 4. As the goal object categories in the
evaluation split decrease in similarity to those seen during
training (VAL SEEN →VAL SEEN SYNONYMS →VAL UN-
SEEN), the following trends occur: We observe that failures
that occur from timeout (i.e., never calling STOP) increase
(orange in Fig. 4, 19.5%→25.5%→37.3%), primarily due to
ignoring the goal object (pink, 2.6%→8.6%→16.8%), rather
than inefficient exploration that causes the agent to miss
the goal object (brown, stays between 16.8%-20.5%). We
also observe that the agent is more likely to move away
from the goal object (enter and leave its success region) and
call stop elsewhere (purple, 2.2%→11.4%→17.8%). These
trends indicate that the agent struggles to generalize and
correctly navigate to and call STOP when seeing a goal object
that is too semantically different from the goal categories
in HM3D-OVON’s training split. However, as shown by
the performance of DAgRL+OD, these shortcomings can be
addressed using a pretrained open-vocabulary object detector
and a way to navigate the robot to a detected object and call
STOP (i.e., a point-goal policy).

The causes of failure that consistently contribute a large
portion of the failure across all three of the evaluation
splits are: (1) stopping at the wrong object (yellow, between



16.8%-20.5%), and (2) not seeing the goal object (brown, be-
tween 16.8%-20.5%). This indicates that future work should
prioritize reducing false positives and improving exploration
to find the goal object within the time step limit.

VI. CONCLUSION

We present HM3D-OVON, a large-scale dataset and
benchmark that provides 379 goal object categories and over
15k annotated instances of household objects across 181
unique, photo-realistic virtual scans of real-world environ-
ments. HM3D-OVON facilitates the training and evaluation
of models with an open-set of goals defined through free-
form language, compared to previous datasets that are limited
to a predefined set of object categories at test-time. Through
extensive experiments, we demonstrate that HM3D-OVON
can be used to train an open vocabulary ObjectNav agent
that achieves both higher performance and better robustness
to localization and actuation noise than the state-of-the-art.
We hope that HM3D-OVON leads to further advancements
in embodied AI and opens up new avenues for research in
visual semantic navigation and object recognition.
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